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Abstract. The paper mentions some problems of automated control system development for growth of 

large (150 kg and above) single crystal sapphires. We obtain an analytical equation for the temperature 

distribution and thermal stresses along the crystal axis during the growth phase. An analysis was carried out 

and numerical estimates were obtained for the axial distribution of components of thermoelastic stresses 

depending on the physical, optical, and geometric parameters of the crystal. It is shown that the cause of 

thermal stresses and blocks during crystal growth is the nonlinear temperature dependence of thermal 

conductivity and thermal expansion coefficients.

1 Introduction 

Based on the general concepts of the theory of normal 

directional crystallization from the melt, it is known that 

the crystallization rate 𝑣𝑐𝑟  is proportional to the 

supercooling of the melt ∆𝑇 or the temperature gradient 

at the phase interface. That is, 𝑣𝑐𝑟  ~ ∆𝑇 or 𝑣𝑐𝑟  ~ 𝑔𝑟𝑎𝑑𝑇. 

In the harmonic approximation for the growth rate, 

the expression:  

                      ( )0 1crv v v sin t = + +   (1) 

where 𝑣0 is an average crystal growth rate, 𝑣1 is an 

amplitude of change in growth rate due to temperature 

fluctuations in the melt near the phase transition 

boundary, 𝜔 is a temperature oscillation frequency, 𝑡 is 

time, 𝜑 is some phase. Based on equation (1), we can 

determine the magnitude of the dynamic supercooling or 

overheating of the melt at the crystallization front:  

                      ( )0T T Bsin t  =  + +   (2) 

where ∆𝑇0 is a fixed value of "physical supercooling" 

(the difference between the melting point and the 

crystallization temperature), 𝐵 is a supercooling change 

amplitude. 

It can be seen from equation (2) that, depending on 

the amplitude and phase of the change in the 

supercooling, periodic localized melting of the crystal at 

the crystallization front can occur with re-crystallization 

of the melted layer. 

It should be noted that temperature fluctuation in 

individual local areas on the crystallization front may 

occur due to mixing of hotter and less hot melt layers at 

a forced convention and with different density of melt 

saturation with gas inclusions in these zones. As a result, 

in the places of melting, more favorable conditions arise 

for the capture of micron-sized bubbles and their further 

growth into a single crystal. 

It follows from the above that an important 

conclusion is that the magnitude of the supercooling at 

the crystallization front determines not only the 

conditions for the growth of a single crystal, but also its 

perfection. 

We need to note one more important fact for the 

controlling systems of the growth rate and maintaining 

stability at the crystallization front. The fact is that for 

sapphire the melting point and the crystallization 

temperature do not coincide. The melting point is well 

reproduced at different heating rates, and the 

crystallization temperature depends on the cooling rate 

of the melt [1]. Therefore, in formula (2), ∆𝑇0 should be 

understood as the average value of "physical 

supercooling". 

It follows from the above that fluctuations in the 

magnitude of dynamic supercooling affect the change in 

the rate of crystallization and lead to stricter 

requirements for the system for stabilizing gradients at 

the crystallization front of 𝐴𝑙2𝑂3, than, for example, for 

silicon. 

We will now define two cases of dynamic 

supercooling. The first is small fluctuations in 

supercooling, within the zone of "physical 

supercooling", which are stochastic in nature and depend 

on many factors. These processes are described by 

methods of nonlinear dynamics, in particular, the theory 

of dynamic or deterministic chaos. 

The second case is high-amplitude supercooling 

oscillations that go beyond the limits of "physical 
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supercooling". These fluctuations can occur during 

growth control using an automated system that operates 

on a feedback signal from a weight sensor and regulates 

the power at the heater. 

Since dynamic weighing is an indirect method of 

controlling crystal growth, it becomes necessary to use 

the so-called observation equation, which relates the 

force acting on the weight sensor with the required 

crystal mass and the rate of its crystallization. 

2 The problem of controlling the crystal 
growth using the feedback signal from 
the weight sensor 

When crystals are grown by the modified Kyropoulos 

method (GOI method), a significant part of the crystal is 

in the melt and a pushing force acts on the crystal. The 

magnitude of this force depends on the fluctuation of the 

melt density depending on the temperature, variations in 

the crystallization rate, changes in the angle of growth. It 

is also necessary to add the dependence of the weight 

sensor readings on fluctuations in the temperature of its 

environment, on various kinds of vibrations, etc. Of all 

these parameters, we distinguish two main ones—the 

linear crystallization rate (the vertical component of the 

rate of front advancement into the melt during growth) 

and the shape of the crystallization front, depending on 

the angle of the growth cone. The weight sensor signal is 

a function of these two parameters and the cause of the 

change in weight gain can be either a change in the 

linear crystallization rate or a change in the angle at the 

apex of the growth cone. In view of this, the control 

object is not observable in a fairly wide "dead zone" [2-

4]. 

With this in mind, as well as the inertia of heat 

transfer from the heater to the melt, there is a loss of 

controllability and the control system can enter the self-

oscillatory mode. During the growth process, turbulent 

flows in the melt, vortex flows at the crystallization 

front, etc. can occur. 

There are two main ways to stabilize a chaotic 

system: without feedback and with feedback. The first is 

called chaos suppression, and the second is chaos 

control. The second method which includes active 

control will be described in future research. 

The task of searching for controlling external 

influences, which make it possible to minimize 

temperature fluctuations at the crystallization front, can 

be formulated in a general form. Suppose that in the 

system under consideration there are two competing 

processes: a nonlinear source 𝑄(𝑇), which reflects 

feedback, and a dissipative source, nonlinearity of which 

is determined by the coefficient 𝐾(𝑇). If these functions 

have a power form, then the system can be described by 

the equation:  

                  ( ) ( )
T T

K T Q T
t x x

   
= + 

   
  (3) 

This model is known from studies of plasma physics 

and the theory of controlled thermonuclear fusion and is 

called the model of complex thermal structures. The 

complex structures in this model are unstable and can 

exist only with the correct specification of the initial 

data. In [5], we have investigated a similar model when 

calculating the temperature distribution along the crystal 

axis during growth and optimized some process 

parameters based on identification with experimental 

data. 

In this case, we were guided by the fact that the 

parameters 𝑄(𝑇) and 𝐾(𝑇) in the equation (3) have a 

different physical interpretation depending on the optical 

thickness of the layer 𝜏 = 𝛽0𝐿 (where 𝛽0 is the 

attenuation coefficient, 𝐿 is the thickness of the layer), 

which spreads the flow of heat. 

3 The role of sapphire crystal 
transparency and the effect of nonlinear 
temperature parameters on the quality 
of crystals 

In the general case, the nonstationary problem of joint 

radiation-conductive heat transfer in the direction of the 

X axis in a layer of a semi-transparent medium in terms 

of dimensionless parameters can be written as [6]:  

   ( ) ( ) ( )
( )
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2 * 2
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,

rQ
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       
 

  

  
= − +

  
  (4) 

where 𝜃(𝜏, 𝜉) is a temperature, 𝑄𝑟(𝜃, 𝜉) is a radiation 

flux density, 𝐻(𝜏, 𝜉) is a bulk power of internal sources, 

𝑁∗ is a conductive-radiation parameter. 

In this equation, the parameter 𝑁∗ characterizes the 

relative contribution of thermal conductivity compared 

to radiation. This parameter has large values when 

thermal conductivity prevails, and small ones when 

radiation predominates. That is, when the medium is 

only scattering (𝑁∗ → ∞) and the radiation term in 

equation (4) disappears, then it turns into the usual heat 

conduction equation. 

For a medium with a high optical thickness, the 

attenuation coefficient 𝛽0 is replaced by the absorption 

coefficient. That is, for a sapphire crystal, 𝐾(𝑇) is the 

radiative thermal conductivity coefficient in the diffusion 

approximation (Rosseland approximation [6]). The 

expression for this coefficient is [6-8]:  

                  

2 316

3

SL
SL

N T
K




=   (5) 

where 𝑇𝑆𝐿  is a crystallization temperature, 𝜎 is a Stefan-

Boltzmann constant, 𝑁 is a refraction coefficient. 

If we calculate the conducted-radiation parameter  

𝑁∗ =
𝐾𝐹𝛽0

4𝑁2𝜏𝑇𝑆𝐿
3  for sapphire, then with 𝐾𝐹 = 3

𝑊

𝑚∙𝐾
, 𝛽0 =

0.35
1

𝑐𝑚
, 𝑁 = 1.79, 𝑇𝑆𝐿 = 2308𝐾° and 𝜎 = 5.67 ∙

10−8 𝑊

𝑚2𝐾4 will get 𝑁∗ = 0.0118. 
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Thus, in solving the problem of temperature 

distribution along the axis of a growing crystal, the 

nonlinear parameter 𝐾𝑆𝐿(𝑇) plays a significant role. 

In [5], we obtained expressions for the temperature 

distribution along the axis of a growing crystal 

depending on the geometric and nonlinear parameters 

𝑄1(𝑇) [9] and 𝐾𝑆𝐿
𝑅 (𝑇). Based on this, the formulas for 

calculating the temperature gradient at the crystallization 

front and the maximum crystallization rate were 

obtained:  

       ( )
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Taking into account the numerical values for the 

Stefan-Boltzmann constant 𝜎 = 5.67 ∙ 10−8 𝑊

𝑚2𝐾4, the 

specific latent heat of fusion 𝑍 = 683.2
𝑊∙ℎ

𝑘𝑔
, the melt 

absorption coefficient 𝛽𝑆𝐿 = 0.3 ÷ 0.9
1

𝑐𝑚
, with a fixed 

crystal diameter 𝐷𝑆 = 0.3𝑚 and a corner of the growth 

cone 𝛼 = 180° numerical values can be obtained for 

temperature gradients at the crystallization front and 

maximum growth rate. The results of the calculations are 

given in tables 1 and 2:  
Taking into account the results obtained in [5], it is 

possible to conduct a qualitative analysis and compare 

the role of various factors in the formation of the 

thermally stressed state of a growing crystal. 

Taking into account the formula for temperature 

distribution along the X axis [5], it is possible to 

calculate the axial component of thermal stresses using 

the formula [8]:  

                      
( )

( )22
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  (8) 

where 𝛼𝑇 is a thermal expansion coefficient, 𝜇 is a 

Poisson's ratio, 𝐸 is Young's modulus. 

Substituting 𝑇𝑆𝐿(𝑥) from [5] into (8) can be obtained:  
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  (9) 

The calculation results are shown as graph 1 (
𝛼

2
=

90°) and graph 2 (
𝛼

2
= 45°) in Figure 1, taking into 

account the numerical values of the parameters 𝑁 =
1.79, 𝑇𝑆𝐿 = 2308𝐾°, 𝜇 = 0.27, 𝐸 = 4.34 ∙ 105𝑀𝑃𝑎 

[10], 𝛽𝑆𝐿 = 24.4
1

𝑚
, 

𝛼

2
= 90°, 

𝛼

2
= 45°, 𝛼𝑇 = 5.58 ∙

10−6 1

𝐾°
 [1].  

 

Fig. 1. Distribution of components of thermal stress tensor. 

Table 1. Numerical values for temperature gradients at the crystallization front. 

|𝑔𝑟𝑎𝑑𝑇𝑆(𝑇)| 

Gradient magnitude [
℃

𝑐𝑚
] 

Melt absorption coefficient 𝛽𝑆𝐿 

[𝑐𝑚−1] 
Angle of growth cone α 

4.02 0.3 

180° 
5.2 0.5 

5.6 0.6 

10 0.9 

Table 2. Numerical values of the maximum growth rate. 

𝑣𝑚𝑎𝑥  

Growth rate [
𝑚𝑚

ℎ
] 

Melt absorption coefficient 𝛽𝑆𝐿 

[𝑐𝑚−1] 
Angle of growth cone α 

6.08 0.3 

180° 
4.65 0.5 

4.25 0.6 

3.0 0.9 
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In the same figure, the dashed line (graph 3) shows 

the critical shear stress for the sapphire easy slip system 

[10] (extrapolation of data from [11]). 

In [10], it was shown that in the case of a nonlinear 

quadratic temperature dependence of the thermal 

expansion coefficient 𝛼𝑇(𝑇), the normal components of 

the thermoelastic stress tensor turn out to be linear 

functions of the axial coordinate. 

Graph 4 in Figure 1 shows the linear variation of 

stresses for the case of sapphire growth with length 𝐿 =
100𝑚𝑚 and diameter 𝐷𝑆 = 10𝑚𝑚 in a linear 

temperature field [10]. 

To preserve the scale and display in one picture, we 

used the same parameters when calculating using 

expression (9). 

From Figure 1 it can be seen that the values of 

thermal stresses (graphs 1, 2 and 3) exceed or are very 

close to critical values in the range up to x = 58 mm. 

This means that defects in the form of blocks, twins and 

cracks are possible in this range. Thus, the nonlinear 

nature of the dependence of the thermal expansion 

coefficient causes blocks to appear in the upper part of 

the crystal as it grows to a predetermined diameter after 

seeding, that is, it ultimately affects the quality of the 

crystal. This is especially important when growing large 

crystals using the GOI method. The appearance of 

blocks in the upper part of the crystal was observed in 

experiments performed at Techsapphire LLC (Belgorod), 

when growing crystals weighing 100 kg at different 

temperatures of growing the cone of growth. 

4 Conclusion 

Based on the analysis of work on the development of 

GOI and Czochralski [12-14] methods for growing 

single crystals from the melt, we can conclude that, to 

date, there is no fully automated, strictly replicable 

technology for the production of defect-free single 

crystals. For single crystal sapphires, this is primarily 

optical symmetry, the absence of residual thermal 

stresses and blocks, the absence of bubbles and 

impurities. This is not related to the technical capabilities 

of creating automated growth process control systems.  

One of the reasons for the appearance of defects is 

that when the growth is controlled by a feedback signal 

from a weight sensor, a zone of uncontrollability appears 

and a random change in the crystallization temperature 

regime occurs. In addition, at high temperatures, the 

melts of oxides and semiconductors have a different 

character of chemical interaction with molybdenum or 

tungsten screens, crucible material, etc., and since the 

growth of single crystals can occur both in vacuum and 

in a reducing or neutral gas atmosphere, there is a need 

to work out new technological solutions and temperature 

regimes in the process of growth. 

However, the main reason is of a fundamental nature 

and, as noted in this article, is associated with a non-

linear temperature dependence of some physical and 

thermodynamic parameters of sapphire. In particular, 

residual thermal stresses arise in the crystal, which under 

certain growth conditions can lead to the appearance of 

blocks in the crystal and even to its cracking. 

In turn, the Poynting vector [15, 16] is responsible 

for the optical symmetry of the crystal (a cruciform 

conoscopic picture). Poynting vector is associated with 

electromagnetic parameters and components of the 

dielectric constant tensor, which depend on the 

components of the thermal stress tensor. Based on this, it 

was concluded [15] that the growth of crystals from the 

melt using the GOI method, when the crystal is hanging 

on a moving rod, has a fundamental limitation on the 

size and mass of the crystal. That is, the larger the mass 

of the grown crystal, the more the conoscopic picture is 

distorted and its optical symmetry is broken. 
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